List of Publications Prof. Dr. Helge Küster
Showing results 1 - 20 out of 86
2024
Küster, H. (2024). Medicago truncatula. In Reference Module in Life Sciences https://doi.org/10.1016/b978-0-12-822563-9.00180-3
Woiwode, D., Marten, J. F., Behrens, D., Sondheim, J., Wörz, N., Blume, H. C., Hohnjec, N., & Küster, H. (Accepted/in press). An Affordable Autonomous 2U-Greenhouse for Plant Research in low-gravity Environments. Poster session presented at 28th ELGRA Biennial Symposium & General Assembly, Liverpool, United Kingdom (UK).
2023
Schröder, L., Rupp, O., Senkler, M., Rugen, N., Hohnjec, N., Goesmann, A., Küster, H., & Braun, H.-P. (2023). The Viscum album Gene Space database. Frontiers in Plant Science, 14, Article 1193122. https://doi.org/10.3389/fpls.2023.1193122
2021
Küster, H. (2021). The Medicago truncatula Transcriptome Database MtExpress: Genome-Wide Expression Profiles at Your Fingertips. Plant and Cell Physiology, 62(9), 1359–1361. https://doi.org/10.1093/pcp/pcab144
Schröder, L., Hohnjec, N., Senkler, M., Senkler, J., Küster, H., & Braun, H.-P. (2021). The gene space of European mistletoe (Viscum album). Plant Journal, 109(1), 278-294. https://doi.org/10.1111/tpj.15558, https://doi.org/10.15488/11673
2019
Hartmann, R. M., Schaepe, S., Nübel, D., Petersen, A. C., Bertolini, M., Vasilev, J., Kuester, H., & Hohnjec, N. (2019). Insights into the complex role of GRAS transcription factors in the arbuscular mycorrhiza symbiosis. Scientific reports, 9(1), Article 3360. https://doi.org/10.1038/s41598-019-40214-4, https://doi.org/10.15488/4843
2018
Kirchner, T. W., Niehaus, M., Rössig, K. L., Lauterbach, T., Herde, M., Küster, H., & Schenk, M. K. (2018). Molecular Background of Pi Deficiency-Induced Root Hair Growth in Brassica carinata – A Fasciclin-Like Arabinogalactan Protein Is Involved. Frontiers in Plant Science, 9, Article 1372. https://doi.org/10.3389/fpls.2018.01372, https://doi.org/10.15488/4243
Uhe, M., Hogekamp, C., Hartmann, R. M., Hohnjec, N., & Kuester, H. (2018). The mycorrhiza-dependent defensin MtDefMd1 of Medicago truncatula acts during the late restructuring stages of arbuscule-containing cells. PLOS ONE, 13(1), Article e0191841. https://doi.org/10.1371/journal.pone.0191841, https://doi.org/10.15488/3393
2015
Curto, M., Krajinski, F., Küster, H., & Rubiales, D. (2015). Plant Defense Responses in Medicago truncatula Unveiled by Microarray Analysis. Plant molecular biology reporter, 33(3), 569-583. https://doi.org/10.1007/s11105-014-0770-9
Hohnjec, N., Czaja-Hasse, L. F., Hogekamp, C., & Küster, H. (2015). Pre-announcement of symbiotic guests: Transcriptional reprogramming by mycorrhizal lipochitooligosaccharides shows a strict co-dependency on the GRAS transcription factors NSP1 and RAM1. BMC GENOMICS, 16(1), Article 994. https://doi.org/10.1186/s12864-015-2224-7
Klug, K., Hogekamp, C., Specht, A., Myint, S. S., Blöink, D., Küster, H., & Horst, W. J. (2015). Spatial gene expression analysis in tomato hypocotyls suggests cysteine as key precursor of vascular sulfur accumulation implicated in Verticillium dahliae defense. Physiologia plantarum, 153(2), 253-268. https://doi.org/10.1111/ppl.12239
2014
Bucher, M., Hause, B., Krajinski, F., & Küster, H. (2014). Through the doors of perception to function in arbuscular mycorrhizal symbioses. New Phytologist, 204(4), 833-840. https://doi.org/10.1111/nph.12862
2013
Chen, H., Osuna, D., Colville, L., Lorenzo, O., Graeber, K., Küster, H., Leubner-Metzger, G., & Kranner, I. (2013). Transcriptome-wide mapping of pea seed ageing reveals a pivotal role for genes related to oxidative stress and programmed cell death. PLOS ONE, 8(10), Article e78471. https://doi.org/10.1371/journal.pone.0078471, https://doi.org/10.1371/annotation/f8467b75-4eef-4c44-ad20-eee34c784a66
Hogekamp, C., & Küster, H. (2013). A roadmap of cell-type specific gene expression during sequential stages of the arbuscular mycorrhiza symbiosis. BMC GENOMICS, 14(1), Article 306. https://doi.org/10.1186/1471-2164-14-306
Limpens, E., Moling, S., Hooiveld, G., Pereira, P. A., Bisseling, T., Becker, J. D., & Küster, H. (2013). Cell- and Tissue-Specific Transcriptome Analyses of Medicago truncatula Root Nodules. PLOS ONE, 8(5), Article e64377. https://doi.org/10.1371/journal.pone.0064377, https://doi.org/10.1371/annotation/d8bce646-4127-410a-b4dd-d2d2779a4745
Ubayasena, L., Vijayan, P., Bett, K. E., Gray, G. R., Küster, H., & Warkentin, T. D. (2013). Gene expression profiles of seed coats and biochemical properties of seed coats and cotyledons of two field pea (Pisum sativum) cultivars contrasting in green cotyledon bleaching resistance. EUPHYTICA, 193(1), 49-65. https://doi.org/10.1007/s10681-013-0914-2
2012
Czaja, L. F., Hogekamp, C., Lamm, P., Maillet, F., Martinez, E. A., Samain, E., Dénarié, J., Küster, H., & Hohnjec, N. (2012). Transcriptional responses toward diffusible signals from symbiotic microbes reveal MtNFP- and MtDMI3-dependent reprogramming of host gene expression by arbuscular mycorrhizal fungal lipochitooligosaccharidesspi. Plant physiology, 159(4), 1671-1685. https://doi.org/10.1104/pp.112.195990
Kamphuis, L. G., Williams, A. H., Küster, H., Trengove, R. D., Singh, K. B., Oliver, R. P., & Ellwood, S. R. (2012). Phoma medicaginis stimulates the induction of the octadecanoid and phenylpropanoid pathways in Medicago truncatula. Molecular plant pathology, 13(6), 593-603. https://doi.org/10.1111/j.1364-3703.2011.00767.x
Ortu, G., Balestrini, R., Pereira, P. A., Becker, J. D., Küster, H., & Bonfante, P. (2012). Plant genes related to gibberellin biosynthesis and signaling are differentially regulated during the early Stages of AM fungal interactions. Molecular plant, 5(4), 951-954. https://doi.org/10.1093/mp/sss027
Tisserant, E., Kohler, A., Dozolme-Seddas, P., Balestrini, R., Benabdellah, K., Colard, A., Croll, D., da Silva, C., Gomez, S. K., Koul, R., Ferrol, N., Fiorilli, V., Formey, D., Franken, P. H., Helber, N., Hijri, M., Lanfranco, L., Lindquist, E., Liu, Y., ... Martin, F. (2012). The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytologist, 193(3), 755-769. https://doi.org/10.1111/j.1469-8137.2011.03948.x